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The asymmetric formation of quaternary stereocenters remains
a formidable challenge in organic synthesis.1 While the use of
Meyers’ chiral bicyclic lactam auxiliaries2 continues to be the
benchmark for versatility and predictability in this challenging bond
construction, a number of elegant methods for catalytic formation
of quaternary stereocenters have recently been reported. Included
in this company are the intramolecular Heck reaction,3 rearrange-
ment of enol carbonates,4 transition metal-mediatedπ-allyl chem-
istry,5 copper-catalyzed SN2′ displacement of allylic leaving groups6

and conjugate additions ofâ-keto esters to acrylates,1b phase-transfer
alkylation of 1-indanones,7 and arylation of ketone enolates,8 among
others. Each of these approaches, however, is necessarily limited
to specific substrates and many substitution patterns are unattainable
by these or even stoichiometric methods. We report herein that the
catalytic asymmetric intramolecular Stetter reaction is capable of
forming tertiary ether, thioether, and quaternary stereocenters with
excellent enantioselectivity.

Research in these laboratories has been directed toward exploiting
the reactivity of carbenes of type1 and 2, easily formed in situ
from highly stable and readily prepared triazolium salt precursors
3, Scheme 1. We have previously reported that these carbenes are
effective at catalyzing the intramolecular Stetter reaction9 with good
levels of enantiocontrol.10 Our successes with this reaction prompted
us to investigate the more challenging construction of quaternary
stereocenters.

Trost and co-workers had illustrated that the Stetter reaction is
capable of cyclizing an aldehyde onto aâ,â-disubstituted Michael
acceptor during the synthesis of hirsutic acid;11 however, three
equivalents of achiral thiazolium salt were required to effect the
reaction. The apparent inefficiency of this catalyst was a significant
cause for concern, and although they are somewhat electronically
dissimilar, it was not obvious that our triazolium catalysts would
lend themselves to an efficient catalytic process. Nevertheless, we
initiated our investigation into rendering this reaction enantio-
selective by examining vinylogous carbonate4 as a test substrate
with a series of aminoindanol-derived catalysts. Gratifyingly, tertiary
ether6 was formed in excellent enantioselectivity in all cases, eq 1.

Anisyl-substituted catalyst5a, which has been shown to be highly
effective in the intramolecular Stetter reaction, provided a disap-
pointing 45% yield, albeit with 99% ee. Interestingly, parent phenyl-
substituted catalyst5b, while typically underperforming5a in terms
of conversion,10a gave the product benzofuranone in 80% yield.
This result suggests the presence of subtle mechanistic differences
between this system andâ-monosubstituted substrates. Further
screening identified pentafluorophenyl catalyst5c as the most
effective under these conditions. Subsequent optimization indicated
that triethylamine12 was optimal for providing a balance of the
highest reactivity and selectivity.13,14

With the optimized conditions in hand, a series of aromatic
aldehyde substrates was prepared to test the scope of this
transformation, Table 1. Reaction of aldehydes4 and 7 at room
temperature for 24 h provided benzofuranones6 and8 in high yield
and enantiomeric excess, entries 1 and 2. Thioether9 similarly
undergoes cyclization in good yield and selectivity to form
benzothiophenone10, entry 3. Exposure of ethyl ester11 to the
reaction conditions led to the formation of indanone12 in 95%
yield and remarkable selectivity, entry 4. The corresponding six-
membered ring may also be formed with concomitant generation
of a quaternary stereocenter, although a lower yield accompanies
this reaction. Nevertheless, chromanone14 can be isolated in

Table 1. Aromatic Substrates

a Absolute configuration assigned by analogy to10. b Enantiomeric
excess determined by HPLC analysis on a chiral stationary phase.c

Absolute configuration established by single-crystal X-ray analysis.d

Catalyst added in two portions.Scheme 1
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moderate yield and excellent enantioselectivity, entry 5.

We have previously shown that aliphatic aldehydes are also
competent substrates in the asymmetric intramolecular Stetter
reaction.10 These systems allowed us to readily compare the effect
of alkene geometry. Exposure ofR,â-unsaturated phenyl ketone
E-15 to the reaction conditions provided an 85% yield of cyclo-
pentanone16 bearing the quaternary stereocenter with 96% ee.15

The corresponding isomerZ-15 was examined under identical
reaction conditions and found to proceed more sluggishly to give
a lower yield and ee. This spurred us to focus on substrates
possessing a trans relationship between the pendant aldehyde and
activating group for the rest of this study.

The reaction of a variety of aliphatic substrates was subsequently
investigated, Table 2. Other aromatic ketones react in similar fashion
to give high yields of the product cyclopentanones18and20, entries
1 and 2. An excellent ee is obtained in the cyclization of 4-pyridyl
ketone17, while a slight decrease in selectivity accompanies the
reaction ofp-nitrophenyl ketone19. Furthermore, aliphatic ketones
21 and23 react under these conditions to give products2216 and
24, entries 3 and 4, in excellent selectivity and good yield. Moderate
changes in sterics are also tolerated in the reaction asn-butyl
substituted25 cyclizes with a 71% yield and 98% ee, entry 5.

Attempts to perform the Stetter reaction on the less activated
alkene in methyl ester27 failed, and starting material was recovered
nearly quantitatively, eq 5. However, a second activating group on
the olefin allows for cyclization of bis-methyl ester29 in 78% yield,
although with an enantioselectivity of only 65%. Fortunately, steric
and electronic properties of these easily tunable carbene catalysts
can be exploited, as catalyst31 allows for cyclization to proceed
in 90% ee and good yield.

In conclusion, we have demonstrated the feasibility of enanti-
oselective formation of quaternary stereocenters via a catalytic
asymmetric Stetter reaction. This process delivers the product 1,4-
dicarbonyl compounds bearing a quaternary stereocenter in high
yield and selectivity under exceedingly mild conditions. We have
also described a new electron-deficient catalyst with improved
performance in these reactions, illustrating that subtle electronic
requirements are present in this and related transformations. Efforts
aimed at elucidating the factors responsible for this effect and
expanding the reactivity of these carbenes are ongoing.
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Table 2. Aliphatic Substrates

a Absolute configuration assigned by analogy to22. b Enantiomeric
excess determined by GC or HPLC analysis on a chiral stationary phase;
see Supporting Information for details.c Absolute configuration established
by comparison of optical rotation to known compound, see Supporting
Information for details.
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